Questions
Here’s the fourth R homework.
Codes
data = read.csv("dat1.csv") # 读入数据
library(agricolae)
cat("###################################################################\n\n")
cat("1.1 试评价不同教育程度(Education)的BMI是否有差别?如果有,哪两组有差别?\n\n")
d_BMI = data$BMI # 提取BMI
d_Education = data$Education # 提取edu
d_BMI_edu = data.frame(data$BMI, data$Education) # 组合
# 单因素方差分析
result1= aov(d_BMI~d_Education, data = d_BMI_edu)
result1
# SNK多重比较
result_SNK = SNK.test(result1,"d_Education",group=F)
cat("\n")
result_SNK$comparison
cat("\n综上, 由SNK多重比较可见, 教育程度组中1-2, 1-3, 2-5, 3-5存在明显差异")
cat("\n\n###################################################################\n\n")
cat("1.2 男性和女性的教育程度构成是否相同?\n")
d_edu = data.frame(edu = data$Education, sex = data$Gender) # 组合
# 卡方检验
result2 = chisq.test(table(d_edu),correct=F)
result2$expected
result2
cat("综上, 男性和女性的教育程度构成存在显著差异(p = 0.002304,p < 0.05)")
cat("\n\n###################################################################\n\n")
cat("1.3 男性和女性的种族(Race)分布是否相同?\n\n")
d_race = data.frame(race = data$Race, sex = data$Gender) # 组合
# 卡方检验
result3 = chisq.test(table(d_race),correct=F)
result3$expected
result3
cat("综上, 男性和女性的种族分布之间未观察到显著差异(p = 0.6875,p > 0.05)")
cat("\n\n###################################################################\n\n")
cat("2. 如下两种白喉杆菌培养基培养结果是否相同?\n\n")
# 创建2x2的矩阵
d_2methods = matrix(
c(36,10,24,135), nrow=2,
dimnames = list("Method 2" = c("+","-"),
"Method 1" = c("+","-")
)
)
d_2methods
# 进行McNemar检验
mcnemar.test(d_2methods,correct = F)
cat("综上, 两种不同白喉杆菌培养基培养结果之间存在显著差异(p = 0.01635,p < 0.05)")
cat("\n")
Results
###################################################################
1.1 试评价不同教育程度(Education)的BMI是否有差别?如果有,哪两组有差别?
Call:
aov(formula = d_BMI ~ d_Education, data = d_BMI_edu)
Terms:
d_Education Residuals
Sum of Squares 7.84 40535.99
Deg. of Freedom 1 1239
Residual standard error: 5.719851
Estimated effects may be unbalanced
36 observations deleted due to missingness
difference pvalue signif. LCL UCL
1 - 2 -1.7445839 0.0045 ** -3.08044758 -0.40872016
1 - 3 -1.3112591 0.0314 * -2.52976757 -0.09275068
1 - 4 -0.9836367 0.0584 . -2.00240571 0.03513236
1 - 5 0.1579075 0.7611 -0.86086150 1.17667658
2 - 3 0.4333247 0.4042 -0.58544430 1.45209378
2 - 4 0.7609472 0.3080 -0.45756125 1.97945563
2 - 5 1.9024914 0.0024 ** 0.48391827 3.32106455
3 - 4 0.3276224 0.5282 -0.69114659 1.34639149
3 - 5 1.4691667 0.0245 * 0.13330296 2.80503038
4 - 5 1.1415442 0.0718 . -0.07696422 2.36005266
综上, 由SNK多重比较可见, 教育程度组中1-2, 1-3, 2-5, 3-5存在明显差异
###################################################################
1.2 男性和女性的教育程度构成是否相同?
sex
edu 1 2
1 146.8312 136.16876
2 102.7300 95.27002
3 159.2834 147.71664
4 131.2661 121.73391
5 120.8893 112.11068
Pearson's Chi-squared test
data: table(d_edu)
X-squared = 16.607, df = 4, p-value = 0.002304
综上, 男性和女性的教育程度构成存在显著差异(p = 0.002304,p < 0.05)
###################################################################
1.3 男性和女性的种族(Race)分布是否相同?
sex
race 1 2
1 131.67424 122.32576
2 31.62255 29.37745
3 376.36022 349.63978
4 107.82772 100.17228
5 14.51527 13.48473
Pearson's Chi-squared test
data: table(d_race)
X-squared = 2.2628, df = 4, p-value = 0.6875
综上, 男性和女性的种族分布之间未观察到显著差异(p = 0.6875,p > 0.05)
###################################################################
2. 如下两种白喉杆菌培养基培养结果是否相同?
Method 1
Method 2 + -
+ 36 24
- 10 135
McNemar's Chi-squared test
data: d_2methods
McNemar's chi-squared = 5.7647, df = 1, p-value = 0.01635
综上, 两种不同白喉杆菌培养基培养结果之间存在显著差异(p = 0.01635,p < 0.05)